Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Enhanced magnetic and magnetoelectric properties of In and Co codoped BiFeO3 nanoparticles at room temperature

Identifieur interne : 000132 ( Main/Repository ); précédent : 000131; suivant : 000133

Enhanced magnetic and magnetoelectric properties of In and Co codoped BiFeO3 nanoparticles at room temperature

Auteurs : RBID : Pascal:14-0084481

Descripteurs français

English descriptors

Abstract

Bi1-xInxFe1-yCoyO3 (0 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.05) nanoparticles have been successively synthesized by low temperature ethylene glycol based solution combustion method. The XRD patterns reveal the single phase rhombohedral distorted perovskite structure for pure BiFeO3 (BFO), and In doped BFO sample which is further confirmed from FTIR spectra. The co-doping of In and Co at A-B-sites of BFO results in structural distortion, improves the particles surface morphology in term of porosity, homogeneity, and density with further reduction of grain sizes. The TEM images also confirm the reduction, the average particle size showing particles size of 52 nm for BFO to around 12 nm for codoped BFO sample. All samples show ferromagnetic behavior at room temperature which further improves upon codoping with maximum saturation magnetization of 6.30 emu/gm. The codoping further follows a direct correspondence among lowering of Neel transition temperature (TN ˜ 240 °C), improvement in resistive behavior and enhancement of magnetoelectric effect (α ˜ 4.92 mV/cmOe) at room temperature. The possible origin of improvement in these properties has been explained on the basis of size effect and nature of the dopants.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0084481

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Enhanced magnetic and magnetoelectric properties of In and Co codoped BiFeO
<sub>3</sub>
nanoparticles at room temperature</title>
<author>
<name sortKey="Arya, G S" uniqKey="Arya G">G. S. Arya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Shimla 171005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Shimla 171005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kotnala, R K" uniqKey="Kotnala R">R. K. Kotnala</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>National Physical Laboratory</s1>
<s2>New Delhi 110012</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>National Physical Laboratory</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Negi, N S" uniqKey="Negi N">N. S. Negi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Shimla 171005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Inde</country>
<wicri:noRegion>Shimla 171005</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0084481</idno>
<date when="2014">2014</date>
<idno type="stanalyst">PASCAL 14-0084481 INIST</idno>
<idno type="RBID">Pascal:14-0084481</idno>
<idno type="wicri:Area/Main/Corpus">000088</idno>
<idno type="wicri:Area/Main/Repository">000132</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1388-0764</idno>
<title level="j" type="abbreviated">J. nanopart. res.</title>
<title level="j" type="main">Journal of nanoparticle research</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Codoping</term>
<term>Combustion synthesis</term>
<term>Doping</term>
<term>Ethylene glycol</term>
<term>Ferroic material</term>
<term>Ferromagnetism</term>
<term>Fourier transform spectroscopy</term>
<term>Fourier-transformed infrared spectrometry</term>
<term>Grain size</term>
<term>Indium additions</term>
<term>Lattice distortion</term>
<term>Magnetic materials</term>
<term>Magnetic properties</term>
<term>Magnetoelectric effects</term>
<term>Material processing</term>
<term>Nanoparticles</term>
<term>Nanostructured materials</term>
<term>Neel temperature</term>
<term>Particle size</term>
<term>Porosity</term>
<term>Saturation magnetization</term>
<term>Size effect</term>
<term>Surface morphology</term>
<term>Transition temperature</term>
<term>Transmission electron microscopy</term>
<term>Trigonal lattices</term>
<term>XRD</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Propriété magnétique</term>
<term>Effet magnétoélectrique</term>
<term>Codopage</term>
<term>Nanoparticule</term>
<term>Nanomatériau</term>
<term>Ethane-«1,2»-diol</term>
<term>Synthèse combustion</term>
<term>Diffraction RX</term>
<term>Réseau rhomboédrique</term>
<term>Dopage</term>
<term>Spectrométrie transformée Fourier</term>
<term>Spectrométrie FTIR</term>
<term>Addition indium</term>
<term>Distorsion réseau</term>
<term>Matériau multiferroïque</term>
<term>Morphologie surface</term>
<term>Porosité</term>
<term>Grosseur grain</term>
<term>Microscopie électronique transmission</term>
<term>Dimension particule</term>
<term>Ferromagnétisme</term>
<term>Aimantation saturation</term>
<term>Point Néel</term>
<term>Température transition</term>
<term>Effet dimensionnel</term>
<term>Matériau magnétique</term>
<term>Traitement matériau</term>
<term>BiFeO3</term>
<term>7575</term>
<term>8107B</term>
<term>7550T</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bi
<sub>1-x</sub>
In
<sub>x</sub>
Fe
<sub>1-y</sub>
Co
<sub>y</sub>
O
<sub>3</sub>
(0 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.05) nanoparticles have been successively synthesized by low temperature ethylene glycol based solution combustion method. The XRD patterns reveal the single phase rhombohedral distorted perovskite structure for pure BiFeO
<sub>3</sub>
(BFO), and In doped BFO sample which is further confirmed from FTIR spectra. The co-doping of In and Co at A-B-sites of BFO results in structural distortion, improves the particles surface morphology in term of porosity, homogeneity, and density with further reduction of grain sizes. The TEM images also confirm the reduction, the average particle size showing particles size of 52 nm for BFO to around 12 nm for codoped BFO sample. All samples show ferromagnetic behavior at room temperature which further improves upon codoping with maximum saturation magnetization of 6.30 emu/gm. The codoping further follows a direct correspondence among lowering of Neel transition temperature (T
<sub>N</sub>
˜ 240 °C), improvement in resistive behavior and enhancement of magnetoelectric effect (α ˜ 4.92 mV/cmOe) at room temperature. The possible origin of improvement in these properties has been explained on the basis of size effect and nature of the dopants.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1388-0764</s0>
</fA01>
<fA03 i2="1">
<s0>J. nanopart. res.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Enhanced magnetic and magnetoelectric properties of In and Co codoped BiFeO
<sub>3</sub>
nanoparticles at room temperature</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ARYA (G. S.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>KOTNALA (R. K.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>NEGI (N. S.)</s1>
</fA11>
<fA14 i1="01">
<s1>Department of Physics, Himachal Pradesh University</s1>
<s2>Shimla 171005</s2>
<s3>IND</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>National Physical Laboratory</s1>
<s2>New Delhi 110012</s2>
<s3>IND</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>2155.1-2155.11</s2>
</fA20>
<fA21>
<s1>2014</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>28202</s2>
<s5>354000506112440170</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0084481</s0>
</fA47>
<fA60>
<s1>P</s1>
<s3>PR</s3>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of nanoparticle research</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Bi
<sub>1-x</sub>
In
<sub>x</sub>
Fe
<sub>1-y</sub>
Co
<sub>y</sub>
O
<sub>3</sub>
(0 ≤ x ≤ 0.1, 0 ≤ y ≤ 0.05) nanoparticles have been successively synthesized by low temperature ethylene glycol based solution combustion method. The XRD patterns reveal the single phase rhombohedral distorted perovskite structure for pure BiFeO
<sub>3</sub>
(BFO), and In doped BFO sample which is further confirmed from FTIR spectra. The co-doping of In and Co at A-B-sites of BFO results in structural distortion, improves the particles surface morphology in term of porosity, homogeneity, and density with further reduction of grain sizes. The TEM images also confirm the reduction, the average particle size showing particles size of 52 nm for BFO to around 12 nm for codoped BFO sample. All samples show ferromagnetic behavior at room temperature which further improves upon codoping with maximum saturation magnetization of 6.30 emu/gm. The codoping further follows a direct correspondence among lowering of Neel transition temperature (T
<sub>N</sub>
˜ 240 °C), improvement in resistive behavior and enhancement of magnetoelectric effect (α ˜ 4.92 mV/cmOe) at room temperature. The possible origin of improvement in these properties has been explained on the basis of size effect and nature of the dopants.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70E75</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A07B</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70E50T</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Propriété magnétique</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic properties</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Effet magnétoélectrique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Magnetoelectric effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Codopage</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Codoping</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Codrogado</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Ethane-«1,2»-diol</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Ethylene glycol</s0>
<s2>NK</s2>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Synthèse combustion</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Combustion synthesis</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Diffraction RX</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>XRD</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Réseau rhomboédrique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Trigonal lattices</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Doping</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectrométrie transformée Fourier</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Fourier transform spectroscopy</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Spectrométrie FTIR</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Fourier-transformed infrared spectrometry</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Espectrometría FTIR</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Distorsion réseau</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Lattice distortion</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Distorsión red</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Matériau multiferroïque</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Ferroic material</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Material ferroico</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Morphologie surface</s0>
<s5>29</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Surface morphology</s0>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Porosité</s0>
<s5>30</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Porosity</s0>
<s5>30</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Grosseur grain</s0>
<s5>31</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Grain size</s0>
<s5>31</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Microscopie électronique transmission</s0>
<s5>32</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Transmission electron microscopy</s0>
<s5>32</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>Dimension particule</s0>
<s5>33</s5>
</fC03>
<fC03 i1="20" i2="3" l="ENG">
<s0>Particle size</s0>
<s5>33</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>Ferromagnétisme</s0>
<s5>34</s5>
</fC03>
<fC03 i1="21" i2="3" l="ENG">
<s0>Ferromagnetism</s0>
<s5>34</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Aimantation saturation</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Saturation magnetization</s0>
<s5>35</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Imanación saturación</s0>
<s5>35</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>Point Néel</s0>
<s5>36</s5>
</fC03>
<fC03 i1="23" i2="3" l="ENG">
<s0>Neel temperature</s0>
<s5>36</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>Température transition</s0>
<s5>37</s5>
</fC03>
<fC03 i1="24" i2="3" l="ENG">
<s0>Transition temperature</s0>
<s5>37</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>Effet dimensionnel</s0>
<s5>38</s5>
</fC03>
<fC03 i1="25" i2="3" l="ENG">
<s0>Size effect</s0>
<s5>38</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>Matériau magnétique</s0>
<s5>39</s5>
</fC03>
<fC03 i1="26" i2="3" l="ENG">
<s0>Magnetic materials</s0>
<s5>39</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>Traitement matériau</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="ENG">
<s0>Material processing</s0>
<s5>40</s5>
</fC03>
<fC03 i1="27" i2="X" l="SPA">
<s0>Tratamiento material</s0>
<s5>40</s5>
</fC03>
<fC03 i1="28" i2="3" l="FRE">
<s0>BiFeO3</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="29" i2="3" l="FRE">
<s0>7575</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="30" i2="3" l="FRE">
<s0>8107B</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="31" i2="3" l="FRE">
<s0>7550T</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fN21>
<s1>118</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000132 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000132 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0084481
   |texte=   Enhanced magnetic and magnetoelectric properties of In and Co codoped BiFeO3 nanoparticles at room temperature
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024